Engineering the Therapeutic Microenvironment using Nanostructured Biomaterials

Tejal A. Desai Professor and Chair, Bioengineering and Therapeutic Sciences Director, Health Innovation Via Engineering at UCSF

The Desai Laboratory for Therapeutic Microtechnology and Nanotechnology

We **design** and **fabricate** micro and nanomaterial solutions for:

- Biomimetic Architectures
- Drug Targeting & Delivery
- Cellular Modulation and Integration in Tissues

Therapeutic biomaterials for mitigating disease

The Desai Laboratory for Therapeutic Microtechnology and Nanotechnology

Desai

Can we design materials to better control drug kinetics?

Age-related Macular Degeneration (AMD)

Clinical Need for Better Delivery Systems for wet-AMD

- Current therapies all use intravitreal injection
 - On average patients dosed 7.7 times per year
 - Peaks and troughs lead to poorer outcomes
 - Repeated injection results in risk of infection, retinal detachment, and cataracts
 - Maximum dose is limited by inflammation and elimination from eye
- Requirements?
 - extended delivery duration (at least 4-6 mos)
 - A large drug depot
 - Syringe deployable
 - Device degrades at the end of use (no explant)

Achieving Constant Rate Delivery: Micropores vs Nanopores

Pore Size > Molecular Size

Pore Size ~ Molecular Size

Concentration Dependent Delivery "Single File" Constrained Delivery

Modeling Device Pharmacokinetics

 Continuous delivery can sustain therapeutic concentrations with equivalent payloads

Therapeutic Delivery from Nanostructured Inorganic Implants

Leoni L et al.. Adv Drug Deliv 2004; La Flamme et al., Biomaterials. 2007; Popat et al., Small 2007

Nanoporous Polymers from Nanorod Templates

Supported Nanoporous Membrane Based Devices

Zero Order Delivery of Antibodies

Zero Order Delivery of Glaucoma Drugs

6-month therapeutic IOP effect

40

• Aqueous drug concentration 93 ± 25 ng/mL vs eye drop = 108 ± 23 ng/ml

Can we use micro/nanostructures to reduce fibrosis?

Prognosis of heart failure remains grim due to pathological remodeling

Herum, K.M. et al. (2017). J. Clin. Med., 6, 53; Jhund, P. et al. (2008). Circulation, 118 (20)

Microtopographical cues can successfully modulate fibroblast phenotype

Allen, J., et al. (2016). Tissue Eng. Part A, 22.

Microtopography introduces physical cues to alter the post-infarct environment

Le, L.V., **Mohindra, P.**, et al. (2018). *Biomaterials, 169;* Pinney, J.R., et al. (2014). *Biomaterials, 35(31);* Ayala, P., et al. (2011). *Integrative Biology, 3;* Ayala, P., et al. (2010). *Tissue Eng. Part A, 16(8).*

Hyaluronic acid is an ideal therapeutic polymeric material

- Naturally occurring
- Biodegradable
- Implicated in wound healing resolution
- Demonstrated efficacy for improving cardiac function after myocardial injury

Neonatal rat ventricular fibroblasts form distinct focal adhesions to microrods

Hyaluronic acid microrods (HA microrods)

Scale bar = $20\mu m$

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169

HA microrods reduce expression of key genes indicative of fibrotic phenotype in fibroblasts

HA microrods do not interfere with neonatal ventricular cardiomyocyte contractility

In vivo model of heart failure: rodent ischemiareperfusion myocardial infarction

HA microrods improve cardiac performance 6 weeks after MI and reduce extent of fibrosis

In vivo model: Rodent Ischemia-Reperfusion MI

HA microrods increase left ventricular wall thickness after MI

In vivo model: Rodent Ischemia-Reperfusion MI

HA microrods locally reduce collagen deposition within the infarct region

In vivo model: Rodent Ischemia-Reperfusion MI

Picrosirius Red (Brightfield)

Picrosirius Red (Polarized)

Scale bar = 200µm

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169

Fibroblasts distal to HA microrods adopt more elongated morphology

HA microrod site

Distal Site

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169

Modification of microrods for a range of applications

"Structured" implants for improved wound healing: Stents and Vascular Grafts

Bare Metal Stortg Eluting Stent

Bare Metal Stents

- CoCr, Stainless steel, nitinol
- Coated, (bio-)polymer or ceramic

Drug Eluting Stents

- Anti-Neoplastics (Sirolimus)
- Anti-Proliferative (Paclitaxel)

In-stent restenosis

Lumen narrowing

- Granulation tissue
 - Macrophage infiltration
 - Smooth muscle cell
 - Proteoglycan matrix

 Thrombus formation (white arrow)

Can nanotopography alone be used to modulate vascular cell response?

Nanostructured Stents

₃₃Nuhn H, Blanco, C and Desai T. (2017), ACS Applied Materials & Interfaces **9**:19677-19686

Smooth muscle cell response to nanotubes

Peng et al., Nanoletters

Endothelial cell response to nanotubes

Nanostructured surfaces reduce stenosis

Designing Therapeutic "Materials" at the Micro and Nanoscale

Interfacing Materials with Biologics for Cell Therapy

Immune cell

engagers

Cancer immunotherapy

Immune cells

Islets Insulin Glucose cells

Immune

Autoimmune

IL-2 complexes with Treg-specific nanowires

Treg-specific activation and proliferation

Cartoon credit: Zhen Gu and Kunwoo Lee

Acknowledgements

The Therapeutic Micro and Nanotechnology Laboratory at UCSF

- NIH
- NSF
- JDRF
- Zambon Ltd
- Al Mann Institute
- CIRM
- Catalyst
- Regeneron
- Santen
- USAID
- Eli Lilly

