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Therapeutic biomaterials 
for mitigating disease
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The Desai Laboratory for Therapeutic 
Microtechnology and Nanotechnology

• Biomimetic Architectures 

• Drug Targeting & Delivery

• Cellular Modulation and 
Integration in Tissues

We design and fabricate micro 
and nanomaterial solutions for:
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The Desai Laboratory for Therapeutic 
Microtechnology and Nanotechnology

Topography
Devices

Thin FilmsNanoparticles



Can we design materials to 
better control drug kinetics?



Age-related Macular Degeneration (AMD) 



Current therapies all use intravitreal injection
• On average patients dosed 7.7 times per year
• Peaks and troughs lead to poorer outcomes
• Repeated injection results in risk of infection, 

retinal detachment, and cataracts
• Maximum dose is limited by inflammation and 

elimination from eye

Requirements?
• extended delivery duration (at least 4-6 mos)
• A large drug depot
• Syringe deployable
• Device degrades at the end of use (no explant)

Clinical Need for Better Delivery Systems 
for wet-AMD 



Concentration 
Dependent Delivery

“Single File”
Constrained Delivery

Pore Size > Molecular Size Pore Size ~ Molecular Size

Achieving Constant Rate Delivery: 
Micropores vs Nanopores



Continuous delivery can sustain therapeutic concentrations 
with equivalent payloads

Modeling Device Pharmacokinetics



Titania nanotubular 
membranes

Silicon 
nanochannels

Alumina nanoporous 
capsules

Leoni L et al.. Adv Drug Deliv 2004; La Flamme et al., Biomaterials. 2007; 
Popat et al., Small 2007

Therapeutic Delivery from Nanostructured 
Inorganic Implants



Nanoporous Polymers from Nanorod Templates
1 - Defect

Nanopore
s

NanorodsSi Wafer

Nanorod 
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Film

500 nm

400 nm
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Bernards et al., Advanced Materials 2010; Soft Matter. 2010 



Supported Nanoporous Membrane Based 
Devices

5 µm



Zero Order Delivery of Antibodies

Bernards DA, Nano Letters 2012, Lance K et al, DDTR 2015; Lance K et al. 
IOVS 2015; Schlesinger et al., DDTR 2019

k0 ≈ 1.6 ug/day 



Kim K et al., IOVS, 2017; Kim J et al. J Controlled Release, 2018

• 6-month therapeutic IOP effect
• Aqueous drug concentration 93 ± 25 ng/mL vs eye 
drop = 108 ± 23 ng/ml

Zero Order Delivery of Glaucoma Drugs



Can we use 
micro/nanostructures to 

reduce fibrosis?



Herum, K.M. et al. (2017). J. Clin. Med., 6, 53; Jhund, P. et al. (2008). Circulation, 118 (20) 

Myocardial 
Infarction (MI)

↑ ECM Deposition

↑ Vessel Rarefaction

↑ Endothelial Cell Death

↑ Myofibroblast Transition

Prognosis of  heart failure remains grim due 
to pathological remodeling

Fi
br

os
is

R
ed

uc
ed

 
Va

sc
ul

ar
iz

at
io

n



16

Microtopographical cues can successfully 
modulate fibroblast phenotype

Allen, J., et al. (2016). Tissue Eng. Part A, 22.

Microstructure
Pillars

Flat Microstructure

Flat Microstructure

Flat Microstructure
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Microtopography introduces physical cues to 
alter the post-infarct environment

Infarct 
Environment

Micromechanically Stimulated
Infarct Environment

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169; Pinney, J.R., et al. (2014). Biomaterials, 35(31); Ayala, P., et al. (2011). 
Integrative Biology, 3; Ayala, P., et al. (2010). Tissue Eng. Part A, 16(8).

UV
irradiate

Crosslinked polymer

Microstructures

MicrostructuresPolymer solution
+

photoinitiator

Microrod structures (15x15x100μm)

Scale bar = 100µm
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Hyaluronic acid is an ideal therapeutic 
polymeric material 

• Naturally occurring
• Biodegradable
• Implicated in wound healing resolution
• Demonstrated efficacy for improving cardiac function 

after myocardial injury
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Neonatal rat ventricular fibroblasts form 
distinct focal adhesions to microrods 

Actin/Paxillin/Nucleus/HA rod
Scale bar = 15µm

Scale bar = 20µm

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169

Hyaluronic acid microrods
(HA microrods)
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HA microrods reduce expression of  key genes 
indicative of  fibrotic phenotype in fibroblasts

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169
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HA microrods do not interfere with neonatal 
ventricular cardiomyocyte contractility

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169
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In vivo model of  heart failure: rodent ischemia-
reperfusion myocardial infarction

Day 0: LAD ligation 
and reperfusion

Day 2: HA microrod 
injection into infarct

Day 42: Sacrifice 
and histology

Day 2: Baseline 
ejection fraction 
measurements

Day 42: Endpoint 
ejection fraction 
measurements
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HA microrods improve cardiac performance 6 
weeks after MI and reduce extent of  fibrosis

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169

In vivo model: Rodent Ischemia-Reperfusion MI
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HA microrods increase left ventricular wall 
thickness after MI

In vivo model: Rodent Ischemia-Reperfusion MI

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169

Scale bar = 2mm
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HA microrods locally reduce collagen 
deposition within the infarct region

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169

Scale bar = 200µm

Picrosirius Red 
(Brightfield)

Picrosirius Red 
(Polarized)

Microrod Injection Site Microrod Injection Site
Distal Site Distal Site

In vivo model: Rodent Ischemia-Reperfusion MI
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Fibroblasts distal to HA microrods adopt 
more elongated morphology

Le, L.V., Mohindra, P., et al. (2018). Biomaterials, 169

HA microrod site

Distal Site



Modification of  microrods for a range of  
applications

Pena et al, Biomaterials 2015; 
Mohindra et al., unpublished

Pinney et al, ACS Appl Mat 2014; 
Mkrtschjan et al., J Cell Phys 2017






“Structured” implants for improved wound 
healing:  Stents and Vascular Grafts

Lee et al, Nanoletters 2014; ACS Biomaterial Science, 2016



Bare Metal StentDrug Eluting Stent

Bare Metal Stents

• CoCr, Stainless steel, nitinol

• Coated, (bio-)polymer or ceramic

Drug Eluting Stents

– Anti-Neoplastics (Sirolimus)

– Anti-Proliferative (Paclitaxel)



In-stent restenosis

Lumen narrowing 

Granulation tissue
• Macrophage infiltration
• Smooth muscle cell
• Proteoglycan matrix

Thrombus formation 
(white arrow)

Otusaka et al., Thrombosis, 2012; Nat Rev Cardiol, 2012



Ideal 
Stent 

Surface

Non-
inflammatory

Inhibits 
Smooth 

Muscle Cell 
Growth

Drug 
Eluting

Promotes 
Endothelial 
Cell Growth



Ideal Stent 
Surface

Non-
inflammatory

Inhibits 
Smooth 

Muscle Cell 
Growth

Drug 
Eluting

Promotes 
Endothelial 
Cell Growth

Nano
architecture

Can nanotopography alone be used to 
modulate vascular cell response?



Nanostructured Stents

33Nuhn H, Blanco, C and Desai T. (2017), ACS Applied Materials & 
Interfaces 9:19677-19686



Smooth muscle cell response to nanotubes
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Peng et al., Nanoletters



Endothelial cell response to nanotubes
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Nanostructured surfaces reduce stenosis



Smooth 
Muscle 
Cells

Endothelial 
Cells

Epithelial 
Cells

Fibroblasts

Designing Therapeutic “Materials” at the 
Micro and Nanoscale



Interfacing Materials with Biologics for Cell 
Therapy

Cartoon credit: Zhen Gu and  Kunwoo Lee 

Immune cells Immune cell 
engagers

Cancer immunotherapy

Gene editing

Diabetes

Autoimmune
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